Erratum to “The tangent bundle of an almost-complex free loopspace” [HHA, v. 3(2)(2001), 407-415]

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Tangent Bundle of an Almost-complex Free Loopspace

The space LV of free loops on a manifold V inherits an action of the circle group T. When V has an almost-complex structure, the tangent bundle of the free loopspace, pulled back to a certain infinite cyclic cover g LV , has an equivariant decomposition as a completion of TV ⊗ (⊕C(k)), where TV is an equivariant bundle on the cover, nonequivariantly isomorphic to the pullback of TV along evalua...

متن کامل

Local Symmetry of Unit Tangent Sphere Bundle With g- Natural Almost Contact B-Metric Structure

We consider the unit tangent sphere bundle of Riemannian manifold ( M, g ) with g-natural metric G̃ and we equip it to an almost contact B-metric structure. Considering this structure, we show that there is a direct correlation between the Riemannian curvature tensor of ( M, g ) and local symmetry property of G̃. More precisely, we prove that the flatness of metric g is necessary and sufficien...

متن کامل

Almost Complex Structures on the Cotangent Bundle

We construct some lift of an almost complex structure to the cotangent bundle, using a connection on the base manifold. This unifies the complete lift defined by I.Satô and the horizontal lift introduced by S.Ishihara and K.Yano. We study some geometric properties of this lift and its compatibility with symplectic forms on the cotangent bundle.

متن کامل

Tangent Bundle of the Hypersurfaces in a Euclidean Space

Let $M$ be an orientable hypersurface in the Euclidean space $R^{2n}$ with induced metric $g$ and $TM$ be its tangent bundle. It is known that the tangent bundle $TM$ has induced metric $overline{g}$ as submanifold of the Euclidean space $R^{4n}$ which is not a natural metric in the sense that the submersion $pi :(TM,overline{g})rightarrow (M,g)$ is not the Riemannian submersion. In this paper...

متن کامل

Multiplication on the Tangent Bundle

Manifolds with a commutative and associative multiplication on the tangent bundle are called F-manifolds if a unit field exists and the multiplication satisfies a natural integrability condition. They are studied here. They are closely related to discriminants and Lagrange maps. Frobenius manifolds are F-manifolds. As an application a conjecture of Dubrovin on Frobenius manifolds and Coxeter gr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Homology, Homotopy and Applications

سال: 2003

ISSN: 1532-0073,1532-0081

DOI: 10.4310/hha.2003.v5.n1.a4